系统进行视频车辆检测,需要具备很高的处理速度并采用的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法正确检测到行驶速度较快的车辆,同时也难以在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
为了进行牌照识别,需要以下几个基本的步骤:
· 牌照定位,定位图片中的牌照位置;
· 牌照字符分割,把牌照中的字符分割出来;
· 牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。
采用计算机视觉技术识别车牌的流程通常都包括车辆图像采集,车牌定位,字符分割,光学字符识别,输出识别结果5个步骤。车辆图像的采集方式决定了车牌识别的技术路线。目前国际ITS通行的两条主流技术路线是自然光和红外光图像采集识别。自然光和红外光不会对人体产生不良的心理影响,也不会对环境产生新的电子污染,属于绿色环保技术。
自然光路线是指白天利用自然光线,夜间采用辅助照明光源,用彩色摄像机采集车辆真彩色图像,用彩色图像分析处理方法识别车牌。自然光真彩色识别技术路线,与人眼感光习惯一致,并且,真彩色图像能够反映车辆及其周围环境真实的图像信息,不仅可以用来识别车牌照,而且可以用来识别车牌照颜色、车流量、车型、车颜色等车辆特征。用一个摄像机采集的图像,同时实现所有前端基本视频信息采集、识别和人工辅助图像取证判别,可以前瞻性的为未来的智能交通系统工程预留接口。
车牌管理系统还有车位引导的功能,车主可以通过引导屏幕,了解停车场车位情况,方便停车。车牌识别系统采用现代管理方法,对车辆和人员科学管理,减少了停车排队拥堵现象,提高车辆管理的安全性。
当车辆进入采用智能车牌识别系统的停车场时,系统通过摄像机快速进行车牌识别并自动拍照,并实现自动抬起挡杆放行,无需刷卡取卡;出停车场时,摄像机会自动识别车牌号码,通过和系统白名单比对,如果是固定车辆,道闸自动抬杆放行,如果是临时车辆,系统会自动计算费用,缴费后抬杆放行。